
PyCDA: An Open-Source Library for Automated Crater Detection.  M. R. Klear1, 1Launchpad.AI, 149 Natoma
St., San Francisco, CA 94105; (michael.klear@colorado.edu).

Introduction:  Automated  crater  detection  has
been the subject of research for decades, since before
[1]. With the maturation of deep neural networks, no-
table advances in computer vision have been achieved
[2]. More recent research in automated crater detection
algorithms has  shown promising  results  by  applying
neural networks to this problem [3].

Much of this research claims to achieve near-hu-
man performance on crater detection tasks [4].  Such
claims are difficult to support  because these projects
use human-generated annotations for testing. Variance
in humans performing task is high [5],  so reports of
performance at this level should only claim to repro-
duce the work of a human annotator with some level of
accuracy.

This research has the potential to greatly improve
the scope of crater surveys. Deploying these models at
scale,  however,  involves  a  number of  practical  chal-
lenges.

The Python Crater Detection Algorithm (PyCDA)
package is an open-source crater detection library for
conducting crater surveys with applied neural network
models. Python presents an ideal open-source commu-
nity for building and supporting this package.

Multiple Models:  Originally released as a detec-
tion-only model, the alpha version of PyCDA (0.1.x)
failed to perform on many datasets. This version fea-
tures a single model that is trained on annotated images
from the  Mars  Express  mission,  and  differences  be-
tween Mars  and  other  solar  system bodies  are  great
enough to render this model useless outside of Mars.

Indeed,  much of  the research in  this  domain has
pointed out that models tend to fail when applied to
different  terrains  or  bodies  [3].  Researchers  propose
training or  fine-tuning models  for  novel  regions and
bodies.

The utility of PyCDA in future releases, then, will
be to enable users  to retrain models using annotated
images. 

Public  Model  Repository:  Training  models  is
computationally expensive. The model featured in Py-
CDA 0.1.X, as an example, took several hours using an
NVIDIA Tesla  K80 GPU; this  same task on a  CPU
computer would take days to weeks to complete.

PyCDA’s  intended  users  may not  have  access  to
such hardware, so training models represents a signifi-
cant  time  investment  for  teams.  This  highlights  the
utility of creating a public repository for trained mod-
els; a team can try a set of pre-trained models to find
one  with  an  acceptable  performance  for  the  task  at
hand.

Figure 1: Convolutional Neural Networks learn to filter pixel values 
to produce useful features.

Figure 2: PyCDA 0.1.X fails to yield useful results on this lunar 
image
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PyCDA 0.2.X API:  PyCDA 0.2.X will  provide
three primary methods.

The  first  method is  detect.  When  an  appropriate
model is selected, the detect method will return a list of
detected craters given an input image.

An input  image can  optionally be  assigned  user-
provided annotations. These are required to execute the
remaining two primary methods.

The test method is useful in model selection. This
calls the model to make detections and compares these
with the user-provided annotations to give a measure-
ment of model error. A precursor to this method is in-
cluded in PyCDA 0.1.X (pictured).

The train method allows a user to retrain a model
given the annotations provided with an input image.

By reducing these three tasks to simple calls to the
model  object,  conducting  partially-automated  crater
surveys should be easy to do in practice.

Crater  Surveys  with  PyCDA:  The  process  of
conducting a survey of sub-km impact craters with Py-
CDA follows from these methods.

The surveyor must provide a number of hand-la-
beled annotations. It is advisable to identify the set of
unique terrain types in within the survey area and pro-
vide hand-labeled examples from each of these terrain
types.

The  surveyor  should  then  look  for  appropriate
models on the public repository.  A model trained on
the same body is ideal, but a similar body may work.
The surveyor should test a set of models on the pro-
vided hand-labeled data to identity the best performer.
This  also provides  an estimate of  uncertainty due to

measurement error when interpreting the results of the
survey.

If  no  model  is  acceptable,  the  best-performing
model should be re-trained to improve performance for
the survey at hand. After retraining the model, a sur-
veyor is encouraged to share the model on the public
repository for future use.
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Additional Information:  For more information,
please call Michael Klear at 650-218-1844 or send an
e-mail to michael.klear@colorado.edu .

Figure 3: The pilot version of PyCDA features a test method.
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