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Introduction: Asteroid 16 Psyche is the largest M-
type (metallic) asteroid in the Main Asteroid Belt (MBA)
[1]. The upcoming NASA mission Psyche: Journey to a
Metal World, set to launch in 2022, will reach Psyche in
2026 and orbit the asteroid for 21 months [2, 3]. Psy-
che is the largest exposed metallic body in the MBA, and
the mission will be the first of its kind to visit a metallic
body rather than one composed of rock or ice [4]. Psy-
che is likely the remnant of a differentiated planet core
from a time when planetary accretion was disrupted by
frequent solid-body collisions [4]. However, because of
its distant location and the limits of available measuring
techniques, basic information about Psyche is under de-
bate. Estimates of Psyche’s diameter vary considerably
and typically fall in the range from 213 km to 264 km
[1]. Estimates of Psyche’s bulk density typically range
from 1.4 ± 0.3 g/cm3 to 4.5 ± 1.4 g/cm3 [1].

Psyche has two large impact structures in its South-
ern hemisphere [7]. The largest of these structures is es-
timated to be about 70 km in diameter and up to 6.4 km
deep [7]. The goal of this work is to study the composi-
tion of Psyche by modeling its largest impact crater. We
study various possible material compositions and poros-
ity levels, and we compare the crater profiles in 2D and
3D to estimate Psyche’s material composition.

Materials and Models: The FLAG hydrocode, previ-
ously shown to be effective in modeling impact craters
[8], is an ideal choice to model this crater. FLAG uses a
finite-volume method to model physical processes in 1–3
spatial dimensions [8, 9]. FLAG offers a number of mesh
optimization techniques, including adaptive mesh refine-
ment (AMR) and arbitrary Lagrangian-Eulerian (ALE)
remapping [8, 10].

The probable impact velocities involving Psyche are
between 4.434 km/s and 4.639 km/s [11]. Caldwell et al.
[8] showed that FLAG converges at relatively low reso-
lutions for velocities of 5 km/s. Velocities in this range
indicate that material strength is a factor in crater forma-
tion, which FLAG is able to model well [8, 12].

We used a variety of materials and models for both
impactor and Psyche. For Psyche, we used iron, nickel,
and Monel, a nickel-copper alloy that contains titanium,
aluminum, silicon, and iron [13]. For the impactor, we
used iron, Monel, and silicon dioxide (SiO2). The consti-
tutive models we used for these materials were Preston-
Tonks-Wallace (PTW) [14], Steinberg-Guinan (SG) [15],

and perfect plasticity (pp) [16]. For equations of state
(EOS), we used the tabular SESAME EOS [17] and the
analytic Mie-Grüneisen EOS [18].

2D Results: We began with a series of 2D axisymmet-
ric simulations in order to investigate a variety of materi-
als with reduced computational resources. We modeled
Psyche as a circle of radius 125 km and the impactor as a
circle of radius 5 km, consistent with estimates in the lit-
erature [7, 19], and we modeled the surrounding material
as a void. We chose an impact velocity of 4.5 km/s, con-
sistent with the probable impact velocities of collisions
involving Psyche, and an impact angle normal to Psy-
che’s surface [11]. Figure 1 shows the crater formation
and resulting overturned flap from our simulation using
SiO2 as the impactor material and Monel for Psyche.
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Figure 1: Images from the SiO2-Monel simulation show-
ing the eventual overturned flap: (a) ejected material fol-
lows expected trajectory out of crater; (b) hinge forms
during crater excavation; (c) material collapses at hinge;
(d) flap of hinged ejected material has overturned.

2D Porosity Study In addition to running solid mate-
rial simulations using a variety of materials for impactor
and Psyche, we also conducted a porosity study using the
alloy Monel for both Psyche and impactor. For the poros-
ity study, we initialized Psyche with 30%, 50%, 60%,
70%, and 80% porosity, and we used a solid impactor.
Figure 2 shows the crater profiles from the porosity sim-
ulations.

3D Results: Our 3D simulations used a shape model
for Psyche [7] and a sphere of radius 5 km for the im-
pactor. To cover the existing craters on the shape model,
we used a spherical cap of radius 110 km using the same
material as Psyche. Our 3D simulations tested impact an-
gles of 45◦ and 60◦ from vertical. We will present results
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Figure 2: Crater profiles from Monel-Monel porosity
study. Higher target porosity resulted in greater crater
depths, while crater diameters were less affected by tar-
get porosity than crater depths.

and videos from our 3D simulations at the meeting.

Conclusions: From these simulations, we predict that
Psyche is indeed likely mostly metallic with a porosity
of about 50%. These predictions are consistent with the
idea that M-type asteroids are differentiated planet cores.

Ongoing Work: We are currently using FLAG to sim-
ulate the smaller of the two main craters in Psyche’s
southern hemisphere. Our 2D results are nearing com-
pletion, with 3D simulations planned in the coming
weeks. We anticipate presenting results from these sim-
ulations at the meeting.
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