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   We have investigated the relation between impact 
craters number vs. their rim to floor depth, 𝑑𝑒, and 
diameter, 𝐷, using the Robbins et al Mars global data-
base [1]. We were able to approximately reproduce the 
data with the simple formula (Figures (1) and (2) ) : 
         𝑵(𝐷,𝑑𝑒) ≈ 𝑵(𝐷, 0) [1 − 𝑥]2  ,                          1 
         𝑁𝑛𝑜𝑟  ≡  𝑵(𝐷,𝑑𝑒) 𝑵(𝐷, 0)⁄ ≈ [1 − 𝑥]2 ,           2              
where 𝑵(𝐷,𝑑𝑒) represents the number of craters, per 
diameter bin, with depth  > 𝑑𝑒, and  
                    𝑥 ≡  𝑑𝑒 𝑑𝑒𝑚𝑎𝑥⁄     .                                 3  
For craters with diameters 8, 16, and 32 kilometers 
(km) the expression 𝑑𝑒𝑚𝑎𝑥 used above is given by 
the following Boyce et al [2] formula for the deepest 
freshest Martian craters : 
                      𝑑𝑒𝑚𝑎𝑥 = 0.381𝐷0.52   .               4 
However for diameters of 64 and 80 km, the above 𝐷 
exponent is slightly modified to 0.51 and 0.50, respec-
tively. We argue, at the end of the abstract, that the 
above approximate parabolic behavior, in Eq.(2), 
could be a consequence of the potential energy in-
volved in crater degradation. 
     𝑵(𝐷, 0) is the total number of craters, including all 
depths. This function was described in previous works 
[3, 4], where it was found that  
𝑵(𝐷, 0) = 𝑁 =  𝛷�τmean {1 − 𝐸𝑥𝑝�−𝜏𝑓/𝜏𝑚𝑒𝑎𝑛�}, 5                  

𝛷�τmean = 1.43𝑥105

𝐷1.8  ,                                                     6 

𝜏𝑓/𝜏𝑚𝑒𝑎𝑛 = 2.48𝑥104

𝐷2.5 ≈ (57 𝐷)⁄ 2.5 ,                            7            
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    The analytical model above, Eqs. (5)-(8), gives the 
craters population as a function of crater diameter,𝐷, 
and was justified by taking into consideration the re-
duction in crater number as a function of time, caused 
by the elimination of craters due to effects such as 
erosion, obliteration by other impacts, and tectonic 
changes. The model was applied, in references [3,4] 
(Figure 3) to Mars Barlow’s impact crater catalog [5], 
explaining very well the data, for 𝐷 > ~8𝑘𝑚, and the 
presence of two well-defined slopes in the 
log[𝑁] 𝑣𝑠 log [𝐷] plot, of -4.3 and -1.8, corresponding 
to the asymptotic limits  
𝑁 = 𝛷�𝜏𝑓 = 3.55𝑥109

𝐷4.3 ; 𝜏𝑓/𝜏𝑚𝑒𝑎𝑛 ≪ 1, 𝐷 ≫ 57𝑘𝑚,     

𝑁 = 𝛷�𝜏𝑚𝑒𝑎𝑛 = 1.43𝑥105

𝐷1.8 , 𝜏𝑓/𝜏𝑚𝑒𝑎𝑛 ≫ 1,𝐷 ≪ 57𝑘𝑚. 
Nevertheless, some numerical modifications would be 
needed to adapt the above equations to the data in [1], 
but the main ideas and conclusions remain, with the 
following dynamical interpretation: 𝛷�(𝐷) is the time 
average ( over the total time of craters formation  𝜏𝑓) 
of the rate of meteorite impacts per diameter bin, 

𝛷(𝐷), capable of forming craters of diameter 𝐷. Also, 
𝜏𝑚𝑒𝑎𝑛 is the mean-life of craters of diameter 𝐷, since 
it can be shown [3,4] that  𝐸𝑥𝑝[−𝜏/𝜏𝑚𝑒𝑎𝑛] is the frac-
tion of craters surviving today, that were formed at  
time 𝜏 ago ( hence, 1- 𝐸𝑥𝑝[−𝜏/𝜏𝑚𝑒𝑎𝑛] is then the 
fraction that disappeared ). We can interpret the above 
formalism in a statistical or probabilistic manner. 
Thus, for instance, 𝛷� can be viewed as the probability 
of impacts per unit time, while 1/𝜏𝑚𝑒𝑎𝑛  represents the 
probability, per unit time, for a crater to disappear. 
Accordingly, Eq.(5)  is therefore the familiar formula 
describing the evolution in time of 𝑁, resulting from 
these production vs. destruction processes.  
    From Eq.(7) we see that 𝜏𝑚𝑒𝑎𝑛𝛼 𝐷2.5 ≈ 𝐷2 𝑑𝑒𝑚𝑎𝑥,   
and, furthermore, we can express the volume, 𝑉, of a 
pristine crater as 𝑉 = 𝑘𝐷2 𝑑𝑒𝑚𝑎𝑥, where 𝑘 depends 
on the specific of the geometry of the crater.  Thus we 
have the interesting result that 𝜏𝑚𝑒𝑎𝑛 ≈ 𝛼 𝑉, which is 
a simple and sensible relation that explains the obser-
vations.

 
 Figure 1 
 𝑃𝑙𝑜𝑡 𝑁𝑛𝑜𝑟  𝑣𝑠.𝑑𝑒(𝑘𝑚);      
 𝐷 = 16𝑘𝑚 (𝑏𝑙𝑢𝑒), 32𝑘𝑚(𝑟𝑒𝑑), 64𝑘𝑚(𝑜𝑟𝑎𝑛𝑔𝑒). 
Data from Ref [1], curves from Eq.(2) parabola. 

Figure 2 
𝑃𝑙𝑜𝑡 𝑁𝑛𝑜𝑟𝑣𝑠.𝑑𝑒(𝑘𝑚); 𝐷 = 8𝑘𝑚 (𝑏𝑙𝑢𝑒), 80𝑘𝑚(𝑟𝑒𝑑). 
Data from Ref [1], curves from Eq.(2) parabola. 
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     Formula (4), for the deepest freshest Martian cra-
ters, can be interpreted in the following way. When an 
impact crater, of diameter𝐷, is formed, its initial depth 
is determined probabilistically by Eq. (4). This inter-
pretation is suggested in the depth vs. diameter plots 
illustrated in Boyce et al and Robbins et al papers, 
where the number of craters sharply drops to zero 
when depths are larger than certain 𝑑𝑒𝑚𝑎𝑥 value, 
given by Eq. (4). Moreover, this sharp reduction in 
number can be explained if the statistical deviation 
from the most probable maximum depth, ∆(𝑑𝑒𝑚𝑎𝑥), 
is small compared with 𝑑𝑒𝑚𝑎𝑥. 
      In an idealistic model, where craters of diameter 𝐷 
and initial depth = 𝑑𝑒𝑚𝑎𝑥   degrade uniformly, reduc-
ing their depth at the same rate, we can then associate a 
physical age 𝜏, corresponding to a crater depth = 𝑑𝑒, so 
that larger 𝜏 implies lower 𝑑𝑒. Thus, in such heuristic 
situation, counting all craters, 𝑵(𝐷,𝑑𝑒), deeper than 
𝑑𝑒 (depth> 𝑑𝑒) gives also the number of craters 
younger than 𝜏 ( 𝑁(𝐷, 𝜏)  ). However, in a realistic 
model, where differences in degradation rate are ex-
pected, the number 𝑵(𝐷,𝑑𝑒)  would only be an  ap-
proximation to the actual  𝑁(𝐷, 𝜏).  In other words, a 
crater with depth > 𝑑𝑒 is only probabilistically  young-
er than craters with depth  < 𝑑𝑒. Nevertheless, we still 
expect that 𝑵(𝐷,𝑑𝑒) is similar to 𝑁(𝐷, 𝜏)  , and there-
fore in what follows we will investigate the implica-
tions of the assumption 𝑵(𝐷,𝑑𝑒) ≈ 𝑁(𝐷, 𝜏) = 
 𝛷�τmean {1 − 𝐸𝑥𝑝[−𝜏/𝜏𝑚𝑒𝑎𝑛]}, where now, represent-
ing  𝑁(𝐷, 𝜏),  we are using Eq.(5) with 𝜏 replacing 𝜏𝑓. 
    In Figure (2), for 𝐷 = 8𝑘𝑚 and 80𝑘𝑚, we see larger 
discrepancies between the data and  the parabolic ap-
proximation in Eq.(2), than in Figure (1)  (a situation 
that exist also for 𝐷 > 80𝑘𝑚). On the other hand, the 
region of applicability of Eq. (4)  [2]  is  12𝑘𝑚 < 𝐷 <
49𝑘𝑚, consequently, from now on we will restrict the 
analysis for craters in this region. In this case  
𝑵(𝐷, 0) ≈ 𝑁 = 𝛷�𝜏𝑚𝑒𝑎𝑛  is a good approximation, cor-
responding to the slope - 1.8 in  the left part of Figure 
(3). Then, 𝑵(𝐷,𝑑𝑒) ≈ 𝑁(𝐷, 𝜏),  imply 𝑁𝑛𝑜𝑟 ≈
[1 − 𝑥]2 ≈ 1 − 𝐸𝑥𝑝[−𝜏/𝜏𝑚𝑒𝑎𝑛], or , solving for 𝜏: 
𝜏 𝜏𝑚𝑒𝑎𝑛 ⁄ ≈ − ln[1 − 𝑦2]  ,   𝑦 ≡ 1 − 𝑥.   𝑁𝑛𝑜𝑟  means 
the fraction of craters, of diameter 𝐷, with depth larger 
than 𝑑𝑒, while, on the other hand, 1 − 𝐸𝑥𝑝[−𝜏/𝜏𝑚𝑒𝑎𝑛] 
is the fraction of craters, created at 𝜏, that disappeared 
during the time 𝜏.   
     We argue below that the fractional potential energy 
associated with the filling up of a crater, thus lowering 
𝑥, behaves similarly to  𝑁𝑛𝑜𝑟 ≈ [1 − 𝑥]2 ≡ 𝑦2. To that 
end, consider the assumption that craters mostly de-
grade by deposited material from the bottom up so that 
𝑧 ≡ 𝑦 𝑑𝑒𝑚𝑎𝑥 ,  then measures by how much the origi-
nal crater floor if lifted from 𝑧 = 0. Hence, when a 
crater floor is raised from 𝑧 to 𝑧 + 𝑑𝑧 there is an addi-
tional mass, 𝑑𝑚, with a corresponding potential energy 

change 𝑑𝑈 =(dm)𝑔𝑧 = (𝜌𝐴𝑑𝑧)𝑔𝑧, where 𝜌 and 𝐴 are 
the density and the area cross section of  𝑑𝑚, respec-
tively, and 𝑔 is the acceleration of gravity; thus we 
have:  
𝑑𝑁𝑛𝑜𝑟 ≈ 𝑑(𝑦2) = 2𝑦𝑑𝑦 = 2𝑑𝑈 (𝜌𝐴𝑔[𝑑𝑒𝑚𝑎𝑥]2) ⁄  . 
Furthermore, we expect that the changes in 𝑧 occur 
without altering much 𝐷, and hence  𝐴  is approximate-
ly constant. Therefore 𝑁𝑛𝑜𝑟 ≈ 𝑑𝑈 𝑈𝑚𝑎𝑥⁄  , where 
𝑈𝑚𝑎𝑥 = 1 2� (𝜌𝐴𝑔[𝑑𝑒𝑚𝑎𝑥]2), and consequently 
𝑁𝑛𝑜𝑟 ≈ 𝑈 𝑈𝑚𝑎𝑥⁄   . Moreover, since 𝑁𝑛𝑜𝑟   is also ap-
proximately equal to the fraction of craters, formed at 
𝜏, that disappeared during the time 𝜏,  the above result 
is suggesting that the parabolic behavior is a conse-
quence of the  potential energy involved in transform-
ing craters. 
    In conclusion we have , in Eqs.(1) to (8), a two di-
mensional (depth and diameter) analytical representa-
tion of Mars craters number 𝑵(𝐷,𝑑𝑒) , which is a good 
approximation, particularly for 12𝑘𝑚 ≤ 𝐷 ≤ 49𝑘𝑚 ( 
slope -1.8 in Figure (3) ), to the Robbins et al [1] data. 
This result was also interpreted in terms of a statistical 
relation between age 𝜏 and the depth of craters. Poten-
tial energy associated to crater evolution is also dis-
cussed for physical insight. 
        
   

 
Figure 3: Log-Log  𝑃𝑙𝑜𝑡 of number of craters per bin, 
𝑵(𝐷) 𝑣𝑠 𝐷(km), based on Barlow’s Mars catalog, and 
the curve from the model in Eqs. (5) to (8). Data for 
𝐷 < ~8𝑘𝑚 is undercounted. 
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